

FastFloor

Phase 1 Closeout

report for 2024 06 01

compiled on 2024 07 30

FastFloor: Behavior of Modular Steel Plate Floor Assemblies

Team

WestVirginia

IOWA STATE

Principal Investigators

Jerome F. Hajjar, Benjamin W. Schafer, Matthew R. Eatherton, Onur Avci, W. Samuel Easterling

OHNS HOPKINS

Research Staff

Northeastern University:Sujit BhandariJohns Hopkins University:Shahab Torabian

Current Graduate Research Assistants

Northeastern University:	Ruipeng Liu
Johns Hopkins University:	Rajshri Chidambaram Muthu Kumar, Sophrenia David
Virginia Tech:	Maria Mercado, Fadeel Ramadan, Akanksha Shirwat
West Virginia University:	Feras Abla, Sahabeddin Rifai, Ahmad Rababah

Undergraduate Research Assistants

Northeastern University:	DanLi Lin
West Virginia University:	Benjamin Opie

FastFloor: Behavior of Modular Steel Plate Floor Assemblies

Sponsors

Charles Pankow Foundation

American Institute of Steel Construction

Magnusson Klemencic Associates Foundation

MAGNUSSON Klemencic ASSOCIATES DUNDATION

Nucor NUCOR

> S 55 SCHUFF STEEL

Schuff Steel

Herrick

Herrick Steel

Cives Steel Company

Atlas Tube Atlas Tube

TALS FABRICATION

In-Kind Sponsors

Tate

Cerami

Tate, Inc.

Sherwin-Williams

HENSEL PHELPS

Plan. Build. Manage

Cooper Steel

Clark Construction

Hensel Phelps

FastFloor: Behavior of Modular Steel Plate Floor Assemblies Industrial Advisory Panel

FINANCIAL SPONSORS

Stuart	Harrison	Executive Director	Charles Pankow Foundation
Chris	Raebel	Vice President of Engineering and Research	American Institute of Steel Construction
Devin	Huber	Director of Research	American Institute of Steel Construction
Ron	Klemencic	Chairman and C.E.O.	MKA Foundation
Tabitha	Stine	General Manager - Construction Solutions Services	Nucor Corporation
David	Wright	Director of Preconstruction	Schuff Steel Company
Bob	Hazelton	Chief Executive Officer	Herrick Corporation
Jeff	Pate	Vice President, Sales	Owen Steel Company, Inc.
Tim	Hanenburg	Chief Executive Officer	Cives Corporation
Brad	Fletcher	Senior Sales Engineer	Atlas Tube
Todd	Weaver	Chief Executive Officer	Metals Fabrication Company
IN-KIND SPOR	NSORS		
Jim	Perry	Managing Partner	Cerami
Christopher	Peltier	Managing Principal	Cerami
Bill	Perry	Sales Support Engineer (primary contact)	Tate, Inc.
Tony	Giansanti	Regional Sales Manager (West Coast)	Tate, Inc.
Joseph C.	Windover	Project Development Manager	Sherwin-Williams
FABRICATOR	S AND ERECTORS		
Cori	Amadon	Vice President	J. F. Stearns Co.

Cori	Amadon	Vice President
Daryll	Bridges	Vice President
Larry	Kruth	Owner
Ron	Meng	Engineering Manager
Duff	Zimmerman	President

PRACTITIONERS

Joshua	Mouras
David	McCrary
Chad	Fox
Will	Jacobs
Pedro	Sifre

Senior Associate Project Manager Project Manager Principal Senior Principal

Magnusson Klemencic Associates Barton Malow Company Ruby and Associates Stanley D. Lindsey and Associates, Ltd Simpson Gumpertz & Heger, Inc

J. F. Stearns Co.

Banker Steel Cooper Steel

Kruth Engineering LLC

Overview of Phase 1 Closeout

Phase 1 was under a no cost extension until 2023 06 30.

Phase 2 initiated 2023 07 01 and continues until 2024 12 31.

This slide report provides closeout materials for Phase 1.

Summary of Phase 1 activities, Excerpt from Phase 2 contract

Phase 1: January 2022 – June 2023: Work Completed and Ongoing (a request has been submitted to amend the contact to end Phase 1 on June 30, 2024)

- 1. Formed and met with Industry Advisory Panel (IAP) to iterate on design of prototype system. Several meetings were held with the IAP and subsets of the IAP.
- 2. Conducted a state-of-the-art review (ongoing)
- a. Modular floor systems
 - b. Buckling behavior of structures built with steel plates
- c. Connection and fastening methods for modular floor systems
 - 3. Finalized initial development of the modular floor system; assessed issues of construction sequence, connection detailing, local buckling, and other relevant behavior
 - 4. Finalized initial prototype structures and specimen designs for the vibration tests and acoustic tests.
 - 5. Conducted analyses of prototype structures to document behavior.
 - 6. Initiated the design, analysis, and execution of subassemblage tests of modular floor system for serviceability and acoustics (ongoing).
 - 7. Initiated design and analysis of panel-to-panel connections.
 - 8. Initiated design and analysis on experiments of modular floor system for gravity strength and ductility.
 - 9. (Forthcoming) Produce final report summarizing Phase 1 with recommendations for Phase 2.

A request has submitted for an amendment to the contract to change the end date of Phase \checkmark 1 to June 30, 2024 so as to complete the acoustic and vibration tests that were part of Phase 1, and to advance the design and analysis of experiments to assess gravity strength and ductility of the modular floor system.

NCE was approved, and this slide deck provides the closeout of those activities.

-Phase 1 acoustic tests were completed and reported out, additional tests are now planned in Phase 2

-Work on gravity strength continues in Phase 2, with Phase 1 efforts complete, as provided in quarterly reports.

-Phase 1 vibration work is complete, with a full summary report provided in this closeout slide deck, and work moving to Phase 2 full bay specimen

FastFloor Vibration Update

2024 07 10

Sahab Rifai, Rajshri Kumar, Onur Avci, Ben Schafer

Note, boxes in yellow that appear throughout the presentation are comments collected during the 2024 07 10 meeting from RK: Ron Klemencic (MKA/Pankow), JM: Josh Mouras (MKA), DH: Devin Huber (AISC)

Objectives of Vibration Update Meeting

- 1. Discuss expectations (standards of care) for vibration performance, we have some freedom here, but also need to take care
- 2. Discuss influence of parameters in the design space under our control, challenges we can see, remediations and bounds
- 3. Get RonK et al. up to speed with current vibration test results and current modeling and DG11 work, technical state of play
- 4. Tentative agreement on the path/paths being pursued with respect to the single module performance
- 5. Implications of current work on finalizing full bay vibration specimen details and importance of timelines

Expectations (standards of care) for vibration performance

Lab

In Building

image from Omer Tigli, LinkedIn, floor vibration testing in situ

- DG11 uses past performance and provides procedures attempting to ensure no occupant complaints
- DG11 procedures covers the "outlier" predictions for accelerations, and that is its intent
- DG11 provides both low and high frequency methods, and acceptability is frequency dependent. Our modules are more likely to be under high frequency procedures.

- Lab provides ground truth for modeling
- Lab also allows participants to develop their own independent qualitative assessment
- Measured accelerations are (very) dependent on the person in terms of gait, etc. but are more likely to be average accelerations as opposed to DG11 (extrema)
- In situ measurements provide most realistic response and we know that response is highly sensitive to final details

Expectations (standards of care) for

a. RK Path 1 maybe most defendable?
b. JM Or is Path 2 + DG11 targets the best we
do? .. Modified DG11 for this system...
>RK sympathetic to (b) DG11 improved
DH.. Update DG11 is going to make sense...

DG11 - Fundamental DG11 15 Outdoor pedestrian Possible standards of care Pass DG11 in a configuration, with assistance of a model, then move on **Vibrations** Compare lab ESPA's to fundamental tolerances, if typically pass, move on Str 2. Due to 3. Use our own human perception/judgment based on walking on lab floors Team continues to pursue DG11 as primary path, team largely believes this is most conservative route to take, but a minority opinion in the team wonders if 2 and 3 are enough to allow us to move our attention to other issues. Fig. 2-1. Recommended tolerance limits for human comfort.

image from Omer Tigli, LinkedIn, floor vibration testing in situ

- DG11 uses past performance and provides procedures attempting to ensure no occupant complaints
- DG11 procedures covers the "outlier" predictions for accelerations, and that is its intent
- DG11 provides both low and high frequency methods, and acceptability is frequency dependent. Our modules are more likely to be under high frequency procedures.

• Lab provides ground truth for modeling

Discussion

- Lab also allows participants to develop their own independent qualitative assessment
- Measured accelerations are (very) dependent on the person in terms of gait, etc. but are more likely to be average accelerations as opposed to DG11 (extrema)
- In situ measurements provide most realistic response and we know that response is highly sensitive to final details

Vibration "design space"...

 k, m, β

Why bring this up?

- Let's make sure we understand the implications of our decisions on the vibration predictions.
- For instance L 40' vs. e.g. L 36', quantities are sensitive to L^3 so these choices are not secondary/trivial!
- Other basic issues like beam depth and as a result *EI* is driving us in important ways
- We can see what plate thickness is doing as well. (following slides)

We have many optimizations underway (architectural, erection, more) but we can make choices that improve vibration.

Upperbound Analysis for "passing" DG11...

Assume the plate is stiffened above 20 Hz and no longer an issue

Assume the beam and girder are torsionally stiffened, so only flexural modes are left

Assume that the low frequency DG11 method is all we need, and L=40'

																-													
																FC	or i	1/2'	P	lat	е								
	W36X395	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	4	4
	W36X302	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
	W36X210	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	5
	W36X160	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	5	4	5	5	5
	W36X150	2	2	2	2	2	3	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	5	5	5	5	5
	W36X135	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	5	5	5	5	5	5	5
	W33X263	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4
	W33X221	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	5
	W33X152	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	5	5	5	5	5	5
	W33X130	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	6	6
	W33X118	3	3	3	3	4	4	3	3	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	6	6	6	6	6
	W30X108	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	7	7
	W30X99	4	5	5	5	5	5	5	5	5	5	5	5	5	D	v,		n n	~~	.d -	~ +		oct	ЛС	י א	f			7
	W30X90	5	5	5	5	5	5	5	5	5	5	6	6	6	Γ	К, ^у	vve	: 11	ee	u d	al	iea	151	40	ו, י				8
Girder	W27X102	5	5	5	5	5	5	5	5	5	5	5	6	6	2	nyt	·hi	nσ	n		Ы	lor	אסמ	rl					8
	W27X94	5	5	5	6	6	6	5	6	6	6	6	6	6	a	iiyu		Πg	, "		u		ige						8
	W27X84	6	6	6	6	6	6	6	6	6	6	7	7	7	IP	M,	۱۸/۵	b d		thi	c f	or	co	m	no	cit			9
	W24X104	5	5	6	6	6	6	6	6	6	6	6	6	6	JI	vı,	vvv	e u		CIII	51		CU	,,,,,	ρŪ	SIL	C		8
	W24X94	6	6	6	7	NU	mr	ber	Sdl	n Ce	ells	7	7	7	fl	00	rc	to	da	\mathbf{v}	1	vh	at	ic 1	the	٦			9
	W24X84	6	7	7	7	- 7 -	, T h	~	R^{7} n	~~~~	de	48	8	8		00	13	10	ua	y	, (v	VII	αι	13	une	-			9
	W24X76	7	7	8	8	age	: yr	ie, j	0 ₈ 1	lee	ue	u ₈	8	8	ri	gh	t t.	ററ	$1 \pm a$	n le	ot '	the		no	rin	٥٩	r		10
	W24X68	7	8	8	9	to	pàs	s 🕫 [CG	11	9	9	9	9		<u> </u>													11
	W24X62	8	9	9	10	10	10	9	9	10	10	10	10	10	C	วทร	str		+ +	his	:) c	nır	σ	nal		ai	Ч		12
	W24X55	9	9	10	10	10	11	10	10	11	11	11	11	11	C	511.	JU	uc	ιι	1115	, c	Jui	5	Ju		an	a		13
	W21X73	8	8	9	9	9	10	9	9	9	10	10	10	10	tł	าย	en	gir	าค	er	T	abl	le i	is e	7 re	at			11
	W21X68	8	9	9	10	10	10	9	9	10	10	10	10	11			C 11	''0''		C	• • •			5 2	, C		•		12
	W21X62	9	9	10	10	11	11	10	10	11	11	11	11	11	11	11	11	12	11	12	12	12	12	12	12	12	12	12	13
	W21X55	9	10	11	11	12	12	10	11	12	12	12	12	12	13	12	13	13	12	13	13	13	13	13	14	13	13	13	14
		95	32	10	80	20	35	33	2	22	30	8	80	6	0	32	4	4	4	4	4	0	œ	2	6		~	~	ю
		W36X395	N36X302	W36X210	W36X160	W36X150	W36X135	W33X263	W33X221	W33X152	W33X130	W33X118	W30X108	W30X99	W30X90	W27X102	W27X94	W27X84	W24X104	W24X94	W24X84	W24X76	W24X68	W24X62	W24X55	W21X73	W21X68	W21X62	W21X55
		36.	36,	36,	36.	36.	36.	33.	33.	33)	33)	33.	30)	30)	30)	27	27	27.	24	24)	24	24	24)	24)	24	21	21	21	21
		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
																	Be	ear	n										
		-	NL	mba	rin	the		in th			ing	rotic	in ()/ ra		od f				hine	tion	to a	otic	l fu c -	-0 E	0/ a			
			INU	anne	er in	me	cell	is (r	ie d	amp	ung	rauc	, ui c	70 ľe	qull	red f		atc	:om	una	uon	io s	aus	iy as	-U.Ə	'nġ			

The #'s are the β we need To pass DG11 in these configurations....

Right now we estimate 2.25% damping in installed condition

What do we learn??

Even if we make plate modes and beam torsion go away, passing
DG11 is not easy. (must we pass?)
The role of the girder (and related beam end conditions) is really
important

-If EI (or L) or β are knobs we can turn, we can find a path, if not may need to think about standard of care choice, fancier ideas...

Plate stiffening "design space" and upperbound ideas

If you can get plate frequencies above 20Hz then they are not influencing perceived accelerations

First vibration mode results

Conclusion? In an ideal scenario we can use stiffeners Or thickness to get the plate modes out of the picture.

*ideal in this analysis = infinitely rigid and massless stiffener

Plate stiffening "design space" and upperbound ideas

If you can get plate frequencies above 20Hz then they are not influencing perceived accelerations

First vibration mode results

Great in ideal case, but preliminary analysis says too good to be true. Can't get a practical longitudinal stiffener which is 40' long! To be stiff enough – basically equivalent to another beam...

But we are imagining that K trusses or other braces can provide this same type of support, perhaps at transverse brace locations to break up the vibration mode and improve the frequency.. This is being investigated numerically.

Conclusion? Even in practical scenario we prelim. predict stiffeners and braces can get plate modes out of the picture.

*ideal in this analysis = infinitely rigid and massless stiffener

Objectives of Vibration Update Meeting

- 1. Discuss expectations (standards of care) for vibration performance, we have some freedom here, but also need to be careful
- 2. Discuss influence of parameters in the design space under our control, challenges we can see, remediations and bounds
- 3. Get RonK et al. up to speed with current vibration test results and current modeling and DG11 work, technical state of play
- 4. Tentative agreement on the path/paths being pursued with respect to the single module performance
- 5. Implications of current work on finalizing full bay vibration specimen details and importance of timelines

Peak Accelerations (ESPA) from Random Walking Tests for One Person

Takeaways:

- 1. Angle blocking resulted in significant reduction in accelerations.
- 2. While not a judge of acceptability, it is good sign that accelerations less than 0.5%g in this case
- 3. This is an example for one person walking. Tests conducted with other people show same trend.
- 4. Final floor vibrations acceptability will be judged using model results on full bay.

Experimental results from walking

	Experimental Results from Vibration Testing									
Specimen	Modal Damping Ratios (β) ^{1,2,3}	Min-Max ESPA (% g) ^{4,6}	Mean ESPA (%g) ^{4,6}							
SM68_Bare	0.1% - 0.4%	0.2 - 3.9	1.2							
SM68_RAF_Bare	0.3% - 0.9%	0.1 - 2.2	0.9							
SM68_RAF_AB_L_3	completed	completed	completed							
SM68_RAF_AB_PS_L_3	-	-	-							
SM68_RAF_K_L_3	-	-	-							
SM94_Bare	0.2% - 0.4%	0.1 - 3.1	0.8							
SM94_RAF_Bare	0.6% - 0.9%	0.3 - 1.8	0.6							
SM94_RAF_AB_L_3	completed	completed	~0.4?							
SM94_RAF_AB_PS_L_3	in progress	in progress	in progress							
SM94_RAF_K_L_3	-	-	-							

Looking at impact of RAF: raised access floor AB: angle blocking to beam bottom flange PS: plate stiffeners transverse to plate K: K braces from bot. flange to mid-width plate

Experimental results to date exhibit clear trends in the desired direction.

Mean ESPA from experiments is not the same as predicted ESPA from DG11

1. Obtained using a low-amplitude mass shaker excitation.

2. Modal Damping ratios are amplitude-dependent. Each mode has a different damping ratio. Damping ratios were determined per frequency response functions (FRF).

3. Low-amplitude mass shaker tests were considered which correspond to walking excitation amplitudes (rather than high-amplitude shaker tests).

4. ESPA: Equivalent Sinusoidal Peak Acceleration. Determined based on walking with subharmonics of modal frequencies guided with metronome.

6. Walking tests include random and metronome-guided walking. Max. ESPA results generally correspond to metronome-guided walking.

RK: Agree the trends and calibrating the models are our goal here.

Latest models "working" frequency matching OK

		Free	uency (Hz)
Specimen	Mode	Experiment ¹	SAP2000
	1	7.2	7.61
CMC0 Dara	2	8.3	8.3
SM68_Bare	3	10.6	9.76
	4	12.0	13.8
	1	7.8	8.2
	2	8.4	8.7
SM68_RAF ² _Bare	3	11.3	10.3
	4	12.4	14.7
	1	10.0	10.8
	2	10.4	13.7
SM68_RAF ² _AB_L_3	3	13.3	13.9
	4	14.7	15.9
	1	9.1	9.4
SM94_Bare	2	10.8	10.7
SIM94_Dale	3	12.9	12.2
	4	15.5	17.0
	1	9.2	10.0
SM94 RAF ² Bare	2	10.3	11.0
SWI94_RAF _Dale	3	13.7	12.4
	4	15.3	17.3
	1	9.5	12.8
SM94 RAF ² AB L 3	2	12.7	16.2
SWISH_NAF_AD_L_S	3	17.4	16.3
	4	19.3	20.2

1. Obtained using a low-amplitude mass shaker excitation.

2. Explicit modelling of the RAF with frames (pedestals) and shells (panels).

TS	SM68_RAF_Bare												
RESUL		al Testing plitude Shaker)	S/	AP2000									
EXAMPLE RESULTS	f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape									
EXA	7.75		8.18										
	8.40		8.72										
	11.31		10.28										
	12.39		14.72										

Model results provided for SAP2000 plate FE models, similar results observed to date with ABAQUS shell FE models. Minimal calibration conducted, but true to details (intermittent flange to plate connections, etc.)

Additional model results

Full suite of experimental to SAP model results for frequency matching, not discussed in the meeting but provided for completeness. Companion ABAQUS models also underway.

Mode Shapes and Natural Frequencies – SM68 (Specimen 1)

	SM68_	_Bare			SM68_ <mark>R</mark>	AF_Bare)	SM68_RAF_AB_L_3 Recently Acquired					
	Modal Testing SAP2000		P2000		al Testing plitude Shaker)	S	AP2000		al Testing plitude Shaker)	SAP2000			
f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape		
7.19		7.49		7.75		8.18		9.97		10.80			
8.31		8.25		8.40		8.72		10.40		13.73			
10.63		9.76		11.31		10.28		13.30		13.93			
11.97		13.8		12.39		14.72		14.70		15.89			

Mode Shapes and Natural Frequencies – SM68 (Specimen 1)

SM68_RAF_Bare SM68_RAF_AB_PS_L_3 SM68_RAF_K_L_3 Modal Testing (SAP2000) (SAP2000) **SAP2000** (Low Amplitude Shaker) **f**_n Mode **f**_n Mode Mode Shape Mode Shape f_n (Hz) f_n (Hz) (Hz) Shape (Hz) Shape 8.18 10.88 12.88 7.75 8.72 13.95 8.40 14.32 16.06 11.31 10.28 16.79 14.72 17.61 12.39 18.42

* K Braces are welded with each other at the top.

Mode Shapes and Natural Frequencies – SM94 (Specimen 2)

	SM94_Bare				SM94_ <mark>R</mark>	AF_Bare)	SM94_RAF_AB_L_3 Recently Acquired					
	al Testing olitude Shaker)	SA	SAP2000Modal Testing (Low Amplitude Shaker)SAP2000						al Testing plitude Shaker)	SA	AP2000		
f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape		
9.10		9.35		9.15		9.99		9.48		12.78	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
10.76		10.70		10.33		10.97		12.68		16.23			
12.89	Particular State	12.23		13.73		12.39		17.34		16.31			
15.51		16.98		15.34		17.27		19.25		20.17			

Mode Shapes and Natural Frequencies – SM94 (Specimen 2)

(Low	al Testing Amplitude haker)	SM94_ <mark>RAF</mark> _Bare (SAP2000)					
f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape				
9.15		9.99					
10.33		10.97					
13.73		12.39					
15.34		17.27					

	AF_AB_ <mark>PS</mark> _L_3 AP2000)	SM94_ <mark>RAF_K_L_3</mark> (SAP2000)					
f _n (Hz)	Mode Shape	f _n (Hz)	Mode Shape				
12.90		13.87					
16.55		15.92					
17.00		16.84					
21.11		18.81					

Objectives of Vibration Update Meeting

- 1. Discuss expectations (standards of care) for vibration performance, we have some freedom here, but also need to be careful
- 2. Discuss influence of parameters in the design space under our control, challenges we can see, remediations and bounds
- 3. Get RonK et al. up to speed with current vibration test results and current modeling and DG11 work, technical state of play
- 4. Tentative agreement on the path/paths being pursued with respect to the single module performance
- 5. Implications of current work on finalizing full bay vibration specimen details and importance of timelines

Comparison of Peak Accelerations from Walking and DG-11 Using Fundamental Frequencies from SAP2000

	Experimental Res	Predicted ESPA per AISC DG-11 (%g)⁵							
Specimen	Modal Damping	Min-Max ESPA	Mean ESPA	HFF Procedu	ure ⁵ in Ch. 7	Eq. 2	2-10 ⁷	Smoothed	d Eq. 2-10 ⁸
SM68_RAF_Bare SM68_RAF_AB_L_3 SM68_RAF_AB_PS_L_3 SM68_RAF_K_L_3 SM94_Bare SM94_RAF_Bare	Ratios (β) ^{1,2,3}	(%g) ^{4,6}	(%g) ^{4,6}	β = 0.75%	β = 2.25%	β = 0.75%	β = 2.25%	β = 0.75%	β = 2.25%
SM68_Bare	0.1% - 0.4%	0.2 - 3.9	1.2	6.0	3.8	2.4	2.1	2.7	2.4
SM68_RAF_Bare	0.3% - 0.9%	0.1 - 2.2	0.9	3.9	2.6	2.2	1.9	2.2	1.9
SM68_RAF_AB_L_3	-	-	completed	2.5	1.6	2.2	1.8	1.9	1.6
SM68_RAF_AB_PS_L_3	-	-	in progress	3.7	2.3	2.2	1.8	1.9	1.5
SM68_RAF_K_L_3	-	-	-	4.1	2.6	2.1	1.6	1.8	1.4
SM94_Bare	0.2% - 0.4%	0.1 - 3.1	0.8	1.4	1.1	1.7	1.4	1.8	1.5
SM94_RAF_Bare	0.6% - 0.9%	0.3 - 1.8	0.6	1.1	0.8	1.4	1.2	1.6	1.3
SM94_RAF_AB_L_3	-	-	~0.4?	0.3	0.2	1.6	1.3	1.4	1.1
SM94_RAF_AB_PS_L_3	-	-	in progress	1.2	0.7	1.6	1.3	1.4	1.1
SM94_RAF_K_L_3	-	-	-	1.8	1.3	1.4	1.0	1.3	1.0

1. Obtained using a low-amplitude mass shaker excitation.

2. Modal Damping ratios are amplitude-dependent. Each mode has a different damping ratio. Damping ratios were determined per frequency response functions (FRF).

3. Low-amplitude mass shaker tests were considered which correspond to walking excitation amplitudes (rather than high-amplitude shaker tests).

4. ESPA: Equivalent Sinusoidal Peak Acceleration. Determined based on walking with subharmonics of modal frequencies guided with metronome.

5. Per AISC DG-11, Chapter 7 procedures. The method provides estimations for peak walking accelerations to be compared with recommended limits. SAP2000 and ABAQUS results were utilized.

6. Walking tests include random and metronome-guided walking. Max. ESPA results generally correspond to metronome-guided walking.

7. Unsmoothed Equation 2-10 from DG-11

8. Smoothed Equation 2-10 proposed by Brad Davis (Unpublished Work)

Both DG-11's Eq. 2-10 and smoother Eq. 2-10 proposed by B. Davis output close acceleration results.

and DG-1 Comparison of Peak Ac **r** "compare" ignore low freq. pred. for now, hist. "best" ininteresting, but not appropriate for Using Fundament 2000 ie service pred. to test these floors

	Experimental Results from Vibration Testing			Predicted ESPA per AISC DG-11 (%g)⁵						
Specimen	Modal Damping	Min-Max ESPA	Mean ESPA	HFF	Procedu	ure ⁵ in Ch. 7	Eq.	2-10 ⁷	Smoothed	l Eq. 2-10 ⁸
	Ratios (β) ^{1,2,3}	(%g) ^{4,6}	(%g) ^{4,6}	β=	0.75%	β = 2.25%	β = 0.75%	β = 2.25%	β = 0.75%	β = 2.25%
SM68_Bare	0.1% - 0.4%	0.2 - 3.9	1.2		6.0	3.8	2.4	2.1	2.7	2.4
SM68_RAF_Bare	0.3% - 0.9%	0.1 - 2.2	0.9		3.9	2.6 =	langte h	locking he	lps as exp	ected ⁹
SM68_RAF_AB_L_3	-	-	completed		2.5	1.6 🛁	Z 272	1.8	1.9	1.6
SM68_RAF_AB_PS_L_3	-	-	in progress		3.7	2.3		1.0	elping, ne	1.0
SM68_RAF_K_L_3	-	-	-		4.1	2.6	K <u>b</u> race	ineffectiv	e on its ow	/n 1.4
SM94_Bare	0.2% - 0.4%	0.1 - 3.1	0.8		1.4	1.1	1.7	1.4	1.8	1.5
SM94_RAF_Bare	0.6% - 0.9%	0.3 - 1.8	0.6		1.1	0.8	1.4	1.2	1.6	1.3
SM94_RAF_AB_L_3	-	-	~0.4?		0.3	0.2	1.6	1.3	1.4	1.1
SM94_RAF_AB_PS_L_3	-	-	in progress		1.2	0.7	1.6	1.3	1.4	1.1
SM94_RAF_K_L_3	_	_	-		1.8	1.3	1.4	1.0	1.3	1.0

a different dan

stimations for p

ESPA results ge

(ork)

RK – what's the source of the 0.75% to 1. Obtai 2. Mode 2.25% assumption? Ben - DG11 chart has function been used for us to justify beta increase in 3. Low-a d to walking exci 4. ESPA installed condition. RK.. Prefers the on walking with 5. Per / measured damping at the lower level... Or **SAP200** 6. Walki we need to look at real fitout to get higher 7. Unsm beta.. Onur – carpet, desk, table, etc. and a 8. Smoo Both DC full floor 30x40, can perhaps help us here utput close acce

- DG11 predictions more conservative than ٠ experimental mean ESPA, closer to max observed ESPA in testing
- Specimen 2 (SM94) has much better behavior and consistency in tests and in models...

ponse

limits.

Comparison of Peak Ac Using Fundament			"compare" to test		"best" in- ervice pred		DG-1	If we don't ignore the classical method this is the results		
	Experimental Res	sults from Vibratio	on Testing		Predicted	ESPA pe	er AISC D	G-11 (% g) ⁵		
Specimen	Modal Damping Ratios (β) ^{1,2,3}	Min-Max ESPA (% g) ^{4,6}	Mean ESPA (% g) ^{4,6}	HFF Procedure ⁵ in Ch. 7 Eq. 2-10 ⁷ $\beta = 0.75\%$ $\beta = 2.25\%$ $\beta = 0.75\%$ $\beta = 2.2$			2-107	Smoothed Eq. 2-10 ⁸		
SM68 Bare	0.1% - 0.4%	0.2 - 3.9	1.2	6.0	3.8	2.4	2.1	2.7	2.4	
SM68_RAF_Bare	0.3% - 0.9%	0.1 - 2.2	0.9	3.9	2.6	2.2	1.9	2.2	1.9	
SM68_RAF_AB_L_3	-	-	completed	2.5	1.6	2.2	1.8	1.9	1.6	
SM68_RAF_AB_PS_L_3	-	-	in progress	3.7	2.3	2.2	1.8	1.9	1.5	
SM68_RAF_K_L_3	-	-	-	4.1	2.6	2.1	1.6	1.8	1.4	
SM94_Bare	0.2% - 0.4%	0.1 - 3.1	0.8	1.4	1.1	1.7	1.4	1.8	1.5	
SM94_RAF_Bare	0.6% - 0.9%	0.3 - 1.8	0.6	1.1	0.8	1.4	1.2	1.6	1.3	
SM94_RAF_AB_L_3	-	-	~0.4?	0.3	0.2	1.6	1.3	1.4	1.1	
SM94_RAF_AB_PS_L_3	-	-	in progress	1.2	0.7	1.6	1.3	1.4	1.1	
SM94_RAF_K_L_3	-	-	-	1.8	1.3	1.4	1.0	1.3	1.0	

1. Obtained using a low-amplitude mass shaker excitation.

2. Modal Damping ratios are amplitude-dependent. Each mode has a different dan functions (FRF).

3. Low-amplitude mass shaker tests were considered which correspond to walking exci

4. ESPA: Equivalent Sinusoidal Peak Acceleration. Determined based on walking with

5. Per AISC DG-11, Chapter 7 procedures. The method provides estimations for p SAP2000 and ABAQUS results were utilized.

- 6. Walking tests include random and metronome-guided walking. Max. ESPA results ge7. Unsmoothed Equation 2-10 from DG-11
- 8. Smoothed Equation 2-10 proposed by **Brad Davis** (**Unpublished Work**) Both DG-11's Eq. 2-10 and smoother Eq. 2-10 proposed by B. Davis output close accel
- DG11 predictions more conservative than experimental mean ESPA, closer to max observed ESPA in testing
- Specimen 2 (SM94) has much better behavior and consistency in tests and in models...

ponse

limits.

No Braces

solution:

DG11

SAP200 that drives the

Peaks

FRF

and

Frequencies

uo

Braces

Effect of

from

FRF

Details

Angle Blocking (AB)

These FRF results are inputs into the DG11 analysis, primarily with respect to frequencies (and mode shapes, not shown)

Angle blocking is effective in shifting lower frequencies

Plate stiffeners primarily influencing frequencies above 20Hz, and seem to cause issues (cause not determined) at middle frequencies

Objectives of Vibration Update Meeting

- 1. Discuss expectations (standards of care) for vibration performance, we have some freedom here, but also need to be careful
- 2. Discuss influence of parameters in the design space under our control, challenges we can see, remediations and bounds
- 3. Get RonK et al. up to speed with current vibration test results and current modeling and DG11 work, technical state of play
- 4. Tentative agreement on the path/paths being pursued with respect to the single module performance
- 5. Implications of current work on finalizing full bay vibration specimen details and importance of timelines

Tentative agreement on the path/paths being pursued with respect to the single module performance

- We are pursuing experiments on angle blocking (complete) and transverse plate stiffeners (in progress)
- The models have close enough agreement with experiments that we can begin to "have some trust"; however, DG11 ESPA results and test-based ESPA results are not directly comparable
 - so we do not have model validation against accelerations, if we want to pursue that, adds a lot of complication, now we need to explicitly model walking/gait/step strikes etc.
- What is our standard of care/acceptability before moving on to the full bay testing?
 - Do we want a modeled system that passes DG11 high frequency method at 0.5%g this has been promoted internally as a goal
 - Would we allow the relief of a higher %g at higher freq?
 - Is a tested system with a mean ESPA near or less than 0.5%g adequate our current 10x40 purposes?
 - What about our own user perception as a standard of care?
- Are we open to some of the bigger "knobs" in our design space vibrations?
 - Length, beam depth, plate thickness, supplemental damping are compromises here worth seeing in some further form so we understand the impact of our decisions?

RK: something like bullet point 3
might be acceptable. Consider it at
DG11 with some improvements.
(Bullet 1 is a fallback. But does not
have to be primary)
JM, DH agree... Let's us move
forward, don't feel stuck..all good

Objectives of Vibration Update Meeting

- 1. Discuss expectations (standards of care) for vibration performance, we have some freedom here, but also need to be careful
- 2. Discuss influence of parameters in the design space under our control, challenges we can see, remediations and bounds
- 3. Get RonK et al. up to speed with current vibration test results and current modeling and DG11 work, technical state of play
- 4. Tentative agreement on the path/paths being pursued with respect to the single module performance
- 5. Implications of current work on finalizing full bay vibration specimen details and importance of timelines

Full-bay vibration specimen discussion

- Tests will be at WVU, we can examine drawings again, but basic ideas are set.
 - What is not set is girder size, beam size, plate thickness, angle blocking, plate stiffeners exact configuration to test...
- Upperbound DG11 analysis suggests girders will pull down frequency and this will
 potentially be bad for ESPA (i.e. %g) drives to different beam sizes, etc., do we
 care at this stage? (account for this?)
- Continuity across modules has been hypothesized as helpful (we know it is in concrete-filled steel deck floors) but here the vertical plate stiffness is low, should we expect a substantial benefit?
- If end effects matter, should we look at some of the beam end conditions that produce favorable conditions? What about the girder support conditions, do we want to see what happens when that modes are locked away? Do we want to see a test that clearly shows acceptable behavior (is a test enough?)
- We are developing models of the full bay specimen, do we want to see preliminary results of such models before we finalize full bay detailing? We think yes.
- The clock is ticking, full bay specimens perhaps need to be locked in by end of July can we make the leap with current standards of care and assumptions?

Full-bay vibration specimen discussion

- Tests will be at WVU, we can examine drawings again, but basic ideas are set.
 - What is not set is girder size, beam size, performing exact configuration to test...
- Upperbound DG11 analysis suggests g potentially be bad for ESPA (i.e. %g) di care at this stage? (account for this?)
- Continuity across modules has been h concrete-filled steel deck floors) but h we expect a substantial benefit?
- If end effects matter, should we look a RK sidebar transverse walking not tested much to date, produce favorable conditions? What a because of the specimens.. On 40' span can you get up to want to see what happens when that a test that clearly shows acceptable because of the specimens with the pace, but in transverse in real building then you can get up to to pace, so maybe transverse dir. really important. Larger
- We are developing models of the full specimen revelatory on the real world case. preliminary results of such models be We think yes.
 JM – full bay hopes and dreams, ok to be ag
- The clock is ticking, full bay specimens
 July can we make the leap with currer

DH- end supports, benefit from any end stiffness, and end plate tieing to a core – that helps, what about the haunch bolted down? Stiffness there?

JM- locking out girder, just prop so it does not vibrate, let's have that in the setup. On one side.

RK-In real buildings will have both conditions, won't have locked off in all conditions... in some only have "unlocked"

JM – full bay hopes and dreams, ok to be aggressive and good with predictions rather than solution that guarantees it works, but not innovative enough.. RK concurs.